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Abstract: The present paper establish some connection theorem between the modified Laplace transform

and modified Fractional Integral. Some special cases and a relevant corollary of our main results are also

proven.
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1. Introduction :

Many Mathematicians take a keen interest in the field of fractional calculus[7]. Also, many of the
authors[5],[6],[10], etc., give a fairly good account of the development and consider several aspects of
applications to potential problems in analysis.[2],[4] etc. e.g. To solve the fractional differential equations
Fractional, the fractional sub-equation method was proposed by[1]. General and but very important theorem
which interconnects the Laplace transform and the generalized Weyl fractional integral operator involving the
multivariable H-function of related functions of several variables is given by[9], A theorem which obtained the
image of modified H-transform under the fractional integral operator involving Foxs H-function by [4],[7], The
applications of fractional in several fields of engineering and science like viscoelasticity, fluid mechanics,

electro-chemistry, biological population models, optics, and signals processing[9]. etc.,

The modified Laplace Transform L°(p) = A[f] of the function f: R} — C is defined as

L°(p) = A[f](p) = fRQ exp[— max(pyty, . ... Pptn)] f(B)dE ...(1.1)
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The set of all points p € R™ such that the integral in[1.1] converges.

The second modified Laplace Transform L,(p) = v[f] of a f: R} — C is defined as

Lo(p) = vf] (0) = [im expl—min(psty, ... ... putn)] f(£)dt (1.2
The set of all points p € R™ such that the integral in [1.2] converges.

The modified Fractional Integrals[7] for Re(a) > 0. The multidimensional modified integrals of order « € C

of f: R} — C is defined by

“:B:’I — 1 on 4 -1 ony a . . —
Sem fx) = Tt D Tre i fRn[mm( ) e s ) 1]+.2F1[a +B,a+n1+al

1 d 1 o 1
= ng:la [ Xk fo t"em(1 - t)“. zFl[a +Ba+n1+a;1— ;] f(xst, ... x t)dt.
...... (1.3)
And
a,Bn _ =" " _ X1 Xn\ _ q1a e 1
SEVTf(x) = TatD I fRz[l max (tl’ ...... tn) 1]+.2F1[a +B8,-m1+a;1

max (x—i, ...... f—:)] f(t)dt

-1 0

© g 1
= et B ;‘l=1a [x [, t"7%7H(E - D% 2F1[a +B8,-m1+a;1— ?]f(xlt, e Xpt)dt.(1.4)

To prove the main result we need the following lemmas.

Lemma 1([11, P.153 Theorem 3]): Let f € M, (R}); g € Mi_ge(a)—y(R¥) and |d| =1 —n — . Then

fRﬁ x‘dg(x)Sf;’g’nf(x)dx = fRﬁ x‘df(x)ngg’"g(x)dx ....(L.5)
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Provided that Re(a) > 0;y; + Re(dj) <0(=1,.... ,N);

lyl <n +min((Re(B), Re(n); |yl + Re(ld]) <1—Re(B—n).

Lemma2: Ifs=(s;.c....,s,) EC", h=(hy.......,h,) ERY, p = (P1.co...,Pn) E R}

And g|%|_1g(y) € L1(R,), then

S
Z )

Re(s)) <0G =123..,n) ....(1.6)

i} n [l ISl o5
xS g(max(pyx)”, .., pay™) dx = —i— (Ip| =) g* (
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[0 1 x* L g (min(pyy™ ... Ppy™) dx = ——L (Ip| ™) g" (

s
h

Where g* denotes the one-dimensional Mellin transform of g(u). We give outlines of the proof of the result.

We have
LHS of (1.6) = [.n x5~ 1g(max(p xit .. . PpXimy) dx

k

. _ h s—1
= Zzﬂfo X kg (orx, ) {fOXR v foxk —;sk—1 dx; v dxy}dxy.
k

o)

n n xS]
— h k
=3 | wetg@ent [ e
k=1"0 j=1;j2k 7
Is|

s, 11 (e By
Y (e f X g0 dox.
k=1 Pk 0

= RHS of (1.6)
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The second assertion of (1.7) of the lemma can be proved similarly.
2. Main Result
Connection Theorem1:Let s € R, and the modified Laplace transform of the operator

SEEMand S48 exist, then

L{SEEFS) = [ Er(r 1,520 F(x)dx (2
And
Lof{SERTF}(s) = Jep E2(n, @ B,m,5,%) f(x)dx ...Re(s) >0 (22)
Where.

E,(n,a,B,1,sx) = Sf;ﬁﬂ?{e—max(slxl ......... snxn)}

A@-pg—m1), +a+n—n1)

(1-n1)1A-8+n-n1),(01) ..(2.3)

3,0
= G,5 [max(s;xq ce v v SpXn)|

And

EZ (Tl, a, ﬁ; n,s, x) — “ ﬁ Tl{e—mln(slxl ......... snxn)}

120 1-8—n1), A+a+n—n1)
_621_32[m1n(51x1 ......... xn)|(0 D,(A-nDA-a-p+n—n),

_ T(n+RI(n+n) [ n+p,n+n

= TnTonrasgim ! nn+a+p +77; —MIN(S1Xq er ver oo snxn)] ....(2.9)

Proof: By definition (1.1) we have
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= fen fE (@, B,m, 5, x)dx ...(2.5)

On using lemma 2 in (2.5) we obtain the result (2.1), the second assertion (2.2) of theorem 1 can be proved

similarly.

Theorem2: Let the modified fractional integrals of the modified Laplace transform of a function, exist then

SEnLolf1(8)} = fpn fOOE2(n, @, B,1,5,%) f(x)dx ...(2.6)
And
ST A1)} = [on fOOEL (@, B, 5,%) f () dx (Re(s) > 0) ....(2.7)

And where E;(n,a, 8,1,x,s) and E,(n, a, 8,1, x,s) are given by [2.3] and [2.4] with x and s interchanging in

it.
Proof: Proceeding on lines similar to theorem 1, we can easily establish theorem 2.

3. Special cases.

If we take f = —a in theorem 1 and 2 we get the following result:

14+a—mn1), Q+a-

Corollaryl LO{X_% f}(s) = fR:_l 612'20 [maX(slxl ......... Snxn) (1 —-n 1) (0 1)

i 1)] f(x)dx
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(3.1)

for (Re(s) > 0; (Re(a) > 0,|y| >n—1 and

Lo{{X% f}(s)} = r(n a)f 1F1[n — a; n; — min(s;Xq v .. ... spx)f()dx L (3.2)

for (Re(s) > 0; (Re(a) > 0,(Re(a) > |yl >n—1

Corollary?2

X {Lo[f1(s)} = “" “) Jrn IF1[n = @ 15 = min(s, % oo s, x)]f () dx ...(3.3)
for (Re(s) > 0; (Re(a) > 0,(Re(a) > |yl >n—1 and

XH{L[f1f ()} = fn Gf}f [max(slxl ......... SpXn) (1+a (_1T21n),’1§,1(-(;_,1a)_ v 1)]f(x)dx

.(3.4)

For Re(s) > 0; (Re(a) > 0, (Re(a) > |yl >n—1 where X§ and X% denote the modified fractional integral

operator defined by[2] etc. Which are, of course also special cases of the operators (1.3) and(1.4). For 8 = —«

Conclusion: Fractional Integral and Laplace transform both are very important branches of mathematics. In

the paper, we have established the connection theorem between the Modified Laplace Transform and Modified

Fractional Integral.
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